一宮町役場新庁舎

Ichinomiya New Town Hall

施工

No. 21-007-2013作成

新築 事務所

発注者 千葉県長生郡一宮町

設計·監理 株式会社フジター級建築士事務所

Fuiita Corporation

株式会社フジタ 東関東支店

カテゴリー

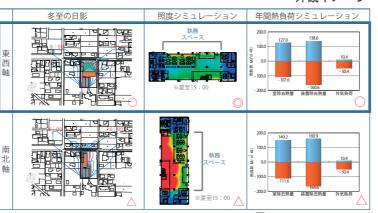
A. 環境配慮デザイン B. 省エネ・省CO₂技術 C. 各種制度活用 D. 評価技術/FB

F リニューアル F 長寿命化

G 建物基本性能確保 H 生産・施工との連携

I. 周辺・地域への配慮 J. 生物多様性 K. その他

『エコアトリウム』を中心に光と風と視線が通う環境配慮型庁舎


千葉県の九十九里浜南端に位置する一宮町の役場庁舎を建て 替えるプロジェクト。新庁舎は自然災害時の新たな防災拠点 となるための堅牢性と利便性、環境への配慮を高めた計画と している。庁舎の配置は東西軸、南北軸の両方を検討し日照 シミュレーション、年間熱負荷による比較、自然通風に適し た風向きを考慮して、北側に執務空間、南側にロビー、およ び4層を貫く吹き抜け空間「エコアトリウム」を配置した東 西軸とした。コアを両側として耐震壁でかため、執務、ロ ビー空間は柱梁のフレームを見せ、前面に大きな窓を設ける ことで堅牢なイメージと透明感を合わせもった外観としてい る。「エコアトリウム」は自然の光と風を取り入れるだけで はなく、コンパクトな庁舎の中で、利用者同志のコミュニ ケーションが誘発される一体感のある空間となる。自然の 光、風の活用に加え、多様な環境配慮設備技術を導入し、大 幅な年間消費エネルギー削減を目指した。

自然の光、風を取り入れる「エコアトリウム」

エコアトリウムの上部に開口部を設け、各執務室の窓も開閉 可能とすることで、下階から風が通り抜けるようにしてい る。屋外の状況に応じて開閉を行うことで最適な自然換気を 行い、中間期での空調利用の低減を図っている。エコアトリ ウムを介して入る自然採光はロビーには暖かな日射を、北側 の執務空間には安定した光を導き入れている。また各階で吹 き抜けている位置を変えて階段状になるようにすることで、 庁舎全体を利用者の視線が交じり合うように見渡せる一体感 のある空間としている。

外観イメージ

配置シミュレーション

エコアトリウムイメージ

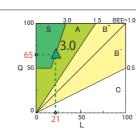
建物データ 所在地

千葉県長生郡一宮町

2014 年 竣工年 敷地面積 4. 463 m²

延床面積 構造 RC造 階数 地上4階

4. 435 m²

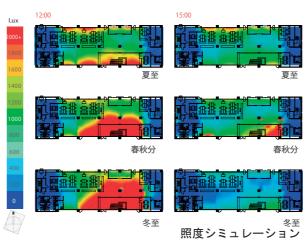

省エネルギー性能

PAL削減 28 % ERR (CASBEE準拠) 25 % LCCO2削減

BEE=3.0 10 % 簡易版 自己評価

CASBEE評価

Sランク



窓廻りの仕組み

南北面の開口部窓面は外壁面より800mm奥に設置し、柱梁型 による日射抑制を行っている。また、南側開口部床から高さ 2,200mmの位置に横ルーバーを、南北にはスパンの中央に縦 ルーバーを設置し、更なる日射抑制としている。横ルーバー は光を上部に反射し、斜めに折り上げた天井面を照らすこと により室内の奥まで光を導いている。窓ガラスは断熱効果の 高い複層ガラスとし、更に南側はLow-Eガラスを採用し、窓 は自然通風が行えるように開閉可能とすることにより、空調 負荷の低減を行っている。

経済性に配慮しながら高い耐震性能を確保した構造計画

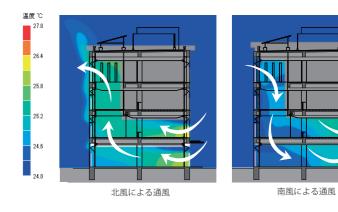
防災拠点となることから重要度係数1.5が指定され、それに 経済性を考慮して鉄筋コンクリート造による耐震壁付ラーメ ン構造を採用した。両側のコアとなる部分にバランスよく耐 震壁を設け、中の執務空間は自由度が高く、開口が大きく確 保できる構造フレームとしている。

自然採光を利用し消費電力を抑えた照明計画

照明は全館LED照明を採用し、自然採光が豊富に取り込める ことから、昼光センサーによる自動制御を行っている。更に 便所、内部階段には人感センサーを採用し、照明による消費 電力を抑えている。

その他の環境配慮への対応

太陽光発電:屋上に太陽光発電パネルを設置し、自然エネル ギー利用を図り、かつ災害の停電時には単独利用が可能なシ ステムとしている。


BEMS: BEMSを導入し、建物内の使用電力量を計測蓄積、導入 拠点や遠隔での見える化を図り、空調、照明設備制御や抑制 する機能によりエネルギー管理を行っている。

雨水利用:建物地下ピット内に50 t の雨水貯留槽を設け、通 常は外構への散水として活用、災害時には可搬式浄水器を利 用することで飲料水への活用が可能な計画としている。

統括:増山哲也/建築:鈴木章浩、舘ゆみ子/構造: 舛井明寿、折尾幸治郎/電気: 鈴木雅史、生嶋拓夫/空調·衛生: 鈴木浩史、中島亨/外構: 堀田忠義

折上げ天井 :光を反射 高さ100m r

窓廻りの仕組み

温熱環境(通風)シミュレーション

太陽光発電パネル 非常用発電機 雨水貯留槽

断面イメージ

主要な採用技術(CASBEE準拠)

- I R1. 1. 建物の熱負荷抑制(Low-E複層ガラス、ルーバー、庇)
- 自然エネルギー利用(太陽光発電パネル、自然換気) LR1. 2.
- 設備システムの高効率化(LED照明、昼光センサー、初期照度補正、人感センサー) LR1. 3.
- LR1. 4. 効率的運用 (BEMS導入)
- LR2. 1. 水資源保護(節水型機器、雨水利用)
- LR3. 1. 地球温暖化への配慮(LCCO2削減)